Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 683902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163482

RESUMO

Respiratory syncytial virus (RSV) is a public health concern that causes acute lower respiratory tract infection. So far, no vaccine candidate under development has reached the market and the only licensed product to prevent RSV infection in at-risk infants and young children is a monoclonal antibody (Synagis®). Polyclonal human anti-RSV hyper-immune immunoglobulins (Igs) have also been used but were superseded by Synagis® owing to their low titer and large infused volume. Here we report a new drug class of immunoglobulins, derived from human non hyper-immune plasma that was generated by an innovative bioprocess, called Ig cracking, combining expertises in plasma-derived products and affinity chromatography. By using the RSV fusion protein (F protein) as ligand, the Ig cracking process provided a purified and concentrated product, designated hyper-enriched anti-RSV IgG, composed of at least 15-20% target-specific-antibodies from normal plasma. These anti-RSV Ig displayed a strong in vitro neutralization effect on RSV replication. Moreover, we described a novel prophylactic strategy based on local nasal administration of this unique hyper-enriched anti-RSV IgG solution using a mouse model of infection with bioluminescent RSV. Our results demonstrated that very low doses of hyper-enriched anti-RSV IgG can be administered locally to ensure rapid and efficient inhibition of virus infection. Thus, the general hyper-enriched Ig concept appeared a promising approach and might provide solutions to prevent and treat other infectious diseases. IMPORTANCE: Respiratory Syncytial Virus (RSV) is the major cause of acute lower respiratory infections in children, and is also recognized as a cause of morbidity in the elderly. There are still no vaccines and no efficient antiviral therapy against this virus. Here, we described an approach of passive immunization with a new class of hyper-enriched anti-RSV immunoglobulins (Ig) manufactured from human normal plasma. This new class of immunoglobulin plasma derived product is generated by an innovative bioprocess, called Ig cracking, which requires a combination of expertise in both plasma derived products and affinity chromatography. The strong efficacy in a small volume of these hyper-enriched anti-RSV IgG to inhibit the viral infection was demonstrated using a mouse model. This new class of immunoglobulin plasma-derived products could be applied to other pathogens to address specific therapeutic needs in the field of infectious diseases or even pandemics, such as COVID-19.


Assuntos
Anticorpos Antivirais/administração & dosagem , Imunização Passiva , Imunoglobulina G/administração & dosagem , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/imunologia , Administração Intranasal , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Modelos Animais de Doenças , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Pulmão/efeitos dos fármacos , Pulmão/virologia , Testes de Neutralização , Infecções por Vírus Respiratório Sincicial/virologia , Conchas Nasais/efeitos dos fármacos , Conchas Nasais/virologia , Proteínas Virais de Fusão/imunologia , Replicação Viral/efeitos dos fármacos
2.
Eur J Pharm Biopharm ; 152: 23-34, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32289493

RESUMO

Inhaled protein therapeutics meet a growing interest for the treatment of respiratory diseases. In liquid aerosols, proteins face stresses that may generate instabilities, such as physicochemical denaturations, aggregation and loss of activity. Monitoring protein stability is thus crucial but implies collection of aerosol droplets before analysis. Many aerosol collection methods may be used, still their interference on protein stability is unknown. In this study, we compared the impact of six aerosol samplers on the stability of a model monoclonal antibody (Ig1), aerosolized with a mesh nebulizer. Ig1 stability was assessed for aggregation and biological activity. The six aerosol samplers generated distinct aggregation profiles for Ig1 at all size scales; counts of micron-sized particles varied by a factor of 100. The heterogeneity did not impact Ig1 activity, which was not significantly changed after nebulization. To extrapolate these results, we evaluated the impact of two samplers on three other proteins. Depending on the protein, samplers gave discordant aggregation and/or activity profiles, sometimes in the reverse trend as compared to Ig1. In conclusion, aerosol samplers interfere with protein stability; this impact depends both on the samplers and the protein, highlighting the importance of using the same collection device throughout the aerosol development process.


Assuntos
Aerossóis/química , Estabilidade Proteica , Proteínas/química , Administração por Inalação , Anticorpos Monoclonais/química , Nebulizadores e Vaporizadores , Tamanho da Partícula
3.
MAbs ; 10(4): 651-663, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29553870

RESUMO

Plasmacytoid dendritic cells (pDCs) play a central role for both innate and adaptive antiviral responses, as they direct immune responses through their unique ability to produce substantial concentrations of type I interferon (IFNs) upon viral encounter while also activating multiple immune cells, including macrophages, DCs, B, natural killer and T cells. Recent evidence clearly indicates that pDCs also play a crucial role in some cancers and several auto-immune diseases. Although treatments are currently available to patients with such pathologies, many are not fully efficient. We are proposing here, as a new targeted-based therapy, a novel chimeric monoclonal antibody (mAb) that mediates a strong cellular cytotoxicity directed against a specific human pDC marker, CD303. This antibody, ch122A2 mAb, is characterized by low fucose content in its human IgG1 constant (Fc) region, which induces strong in vitro and in vivo activity against human pDCs. We demonstrated that this effect relates in part to its specific Fc region glycosylation pattern, which increased affinity for CD16/FcγRIIIa. Importantly, ch122A2 mAb induces the down-modulation of CpG-induced IFN-α secretion by pDCs. Additionally, ch122A2 mAb shows in vitro high pDC depletion mediated by antibody-dependent cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis. Remarkably, in vivo ch122A2 mAb efficacy is also demonstrated in humanized mice, resulting in significant pDC depletion in bloodstream and secondary lymphoid organs such as spleen. Together, our data indicates that ch122A2 mAb could represent a promising cytotoxic mAb candidate for pathologies in which decreasing type I IFNs or pDCs depleting may improve patient prognosis.


Assuntos
Anticorpos Monoclonais/imunologia , Células Dendríticas , Lectinas Tipo C/antagonistas & inibidores , Glicoproteínas de Membrana/antagonistas & inibidores , Receptores Imunológicos/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Humanos , Camundongos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...